
44 The Delphi Magazine Issue 40

Manufacturing
Fake Keystrokes
by Brian Long

Here’s another question origi-
nally posed by a reader of The

Delphi Clinic, but expanded into an
article because of the volume of
information to be covered:

I have seen information on the
internet that allows me to manufac-
ture keypresses programmatically
and have understood the basic prin-
ciples. However, I am having trouble
emulating the Alt+NumPad keys to
generate extended characters. I am
currently attempting to use the
KeyBd_Event function from the
Windows API. I am stuck. Can you
enlighten me?

When people look into faking
keystrokes programmatically, they
often walk straight into a trap.
When keys are pressed, messages
are generated, such as wm_KeyDown,
wm_KeyUp and wm_Char (see Key-
stroke Interception in Issue 38’s
Delphi Clinic for substantially more
detail on this subject). Given this
information, the impulsive action
is to simply send these messages
to the target window and hope for
the best. Generally, this does not
do the job, as Jeffrey Richter
emphasised in an article he wrote
in a 1992 issue of Microsoft Systems
Journal (Volume 7, Number 8).
Windows seems to want more than
just these messages, which are
only the end result of a keypress.
Typically, this involves setting
internal key state information.

In 16-bit Windows, you can jump
through some hoops involving a
window journal playback hook
and, as is the nature of hooks, it can
get quite nasty. You can also take
advantage of a nice routine called
PostVirtualKeyEvent, supplied in
the PenWindowsDLL that you may or
may not have installed. Evidently
this is not ideal since you might not
have the DLL available, but it is dis-
cussed in Chapter 15 of The Revolu-
tionary Guide To Delphi 2. We will
come back to 16-bit Windows later.

In 32-bit, we have a ready-made
solution in the already mentioned
KeyBd_Event API. This fakes a real
keypress, including the internal
key state information. Of course, it
also subsequently generates the
expected keyboard messages as
well. The idea is to make sure the
target window has focus and then
use KeyBd_Event to manufacture
the various keypress and release
actions as required.

The declaration of this routine in
the Windows unit looks like this:

procedure KeyBd_Event(
bVk: Byte; bScan: Byte;
dwFlags, dwExtraInfo: DWORD);
stdcall;

The first parameter is supposed to
be the virtual key code for the key
being pressed. There is some dis-
cussion of virtual key codes back in
Issue 38’s Delphi Clinic on page 59.

The second parameter is the
key’s hardware scan code, as gen-
erated by the BIOS. Some old PC
technical references will have
information about which keys gen-
erate which scan codes, but we
don’t need to worry about that.
Instead we can call MapVirtualKey,
which can take a virtual key code
and will manufacture the corre-
sponding scan code. The only
exception to this rule is with the
Print Screen key. This key can be
used to copy the whole desktop as
a bitmap onto the clipboard (Print
Screen) or copy the active window
onto the clipboard (Alt+Print
Screen). If you pass the Print
Screen virtual key code (vk_Snap-
Shot) as the first parameter, then
you should pass 1 as the scan code
for a full screen snapshot or 0 for a
window snapshot.

The third parameter specifies
extra flags, including information
to distinguish whether the key is
being pressed (0) or released

(KeyEventF_KeyUp), or whether it
was an ‘extended’ key
(KeyEventF_ExtendedKey). The BIOS
generates two scan codes for
extended keys, the first one always
being $E0 or 224. Extended keys
include Page Up, Page Down, Home,
End, the cursor keys, Insert and
Delete, both Windows keys and the
context menu key amongst others.
Fortunately, though, it seems not
particularly important whether we
indicate if a key is extended or not.

The fourth parameter seems
safe to ignore for most purposes,
but in truth allows you to send
arbitrary extra information with a
message. An application can
extract the extra information relat-
ing to the last message plucked
from the message queue with the
GetMessageExtraInfo API. Usually,
only the mouse or keyboard driver
would add this information, but
since the keyboard driver manu-
factures keyboard messages using
KeyBd_Event, we can do likewise if
we wish. Incidentally, the mouse
driver manufactures mouse mes-
sages using a similar Mouse_Event
API call that you may like to
explore.

So that’s the basics about
KeyBd_Event. The Delphi Magazine
has had mention of this API before.
Octavio Hernadez used it in a sub-
mission to the old Tips & Tricks
column in Issue 26. Before continu-
ing I should mention that Windows
98 and Windows NT 4.0 Service
Pack 3 introduce another way of
manufacturing mouse and key-
board messages using the
SendInput API (added to the
Windows import unit in Delphi 4).

Also, going back to this 16-bit
Windows thing, I mentioned that it
typically involves Windows hooks.
Whilst this is generally true, we
can also access KeyBd_Event in
16-bit, but it is defined to take no
parameters, they have to be
passed in CPU registers (yikes!). So
all in all it looks like we need to
investigate 16-bit KeyBd_Event,
32-bit KeyBd_Event and (the very
recent) 32-bit SendInput.

We won’t be looking at the jour-
nal playback hook that can poten-
tially be used to help out here, as in
32-bit mode this is restricted to

December 1998 The Delphi Magazine 45

playing keystrokes back to the
thread that set up the hook, which
limits its usefulness. However if
you wish to see code and explana-
tion that plough through this issue,
I recommend Delphi 1 users check
Delphi Developer’s Guide, by Steve
Teixeira and Xavier Pacheco
(SAMS Publishing), Chapter 21,
p528. 32-bit programmers should
check either Delphi 2 Developer’s
Guide, Chapter 23, p917, or Delphi 4
Developer’s Guide, Chapter 13
p353, by the same authors.

OK, now back to the problem in
hand. The questioner wants to
mimic a Windows user manufac-
turing a character by holding down
the Alt key and typing the charac-
ter number on the numeric keypad.

It’s worth noting at this point
that Alt and a three digit number
represents an OEM or ASCII char-
acter, whereas Alt and a four digit
number gives an ANSI character.
So, the symbol © is ASCII character
184 and ANSI character 169. This
means that you can get a copyright
symbol using either Alt+0169 or
Alt+184 (so long as you are using
the numeric keypad, and not
normal number keys).

To see which keystrokes (or
more particularly which keystroke
messages) are generated by
Alt+0169, you can enlist the help of
WinSight. WinSight is a tool acces-
sible from Delphi’s program group,
and was used quite a lot to get
much of the information about how
keystrokes manufacture messages
in Issue 38’s Clinic piece. Having
launched WinSight and a copy of
Notepad as a guinea pig, locate
Notepad in WinSight’s window
tree. Expanding the top level Note-
pad window shows the internal
multi-line edit control, which is
most of what Notepad is.

Then you ask WinSight to trace
messages going to the edit control
(Messages | Select Windows). You
can also use Messages | Options...
to ensure only input messages are
being traced, to keep all the many
other messages out of the picture.
Having started WinSight tracing
messages (by pushing its Start!
menu item), then switching to
Notepad, pressing Alt+0169, and
stopping WinSight’s tracing (by
pressing Stop!) you get the
information shown in Figure 1.

So, Alt (vk_Menu) is pressed and
held down. Then 0, or the Insert
key on the numeric keypad
(vk_Insert), is pressed and
released, followed by a press and
release of 1, or End (vk_End). Then
comes a press and release of 6, or
the right arrow (vk_Right) and a
press and release of 9 or Page Up
(vk_Prior). Finally, the Alt key is
released and something spots all of
this and generates ANSI character
$A9 or © (which WinSight seems
strangely to draw as Ÿ). These
traced messages should make
more sense if you read the Inter-
cepting Keystrokes entry in Issue
38’s Clinic.

So, to programmatically emulate
this we need to map these
keystrokes back into calls to
KeyBd_Event. Listing 1 does a
suitable job in Delphi 2 and above,

➤ Figure 1

and will effectively type Alt+0169 in
whatever control has focus, but we
will not leave it at this. Instead, we
will use some wrapper routines to
avoid many explicit calls to
KeyBd_Event, and also to allow con-
ditional code to give us one source
file that works in 16-bit and 32-bit
Delphi.

The first generic approach can
be found in KeyTest1.Dpr, sup-
plied on the disk. This project
works with Delphi 1, 2, 3 and 4 and
consists of a form unit, as well as a
re-usable unit containing the real
code (KeysU.Pas). The form, as
shown running in Figure 2, can cap-
ture the screen or current window
by faking a press of the Print
Screen button. As you can see, the
checkbox is currently checked,
and the button has been pressed
to capture the whole of my desk-
top and then copy it to a TImage
component on the form.

The first button demonstrates
slightly more interesting key-
stroke sequences. It hunts out
Delphi’s About box, and then pre-
tends to type in the various undoc-
umented keystroke sequences
that bring up the Delphi Easter
Eggs (see The Delphi Clinic in Issue
38 for more information about
these). To choose a particular
Easter Egg, use the spin edit control
and then push the Delphi button.

Finally, the third button adds a
copyright symbol into an edit
control, as per the questioner’s
requirement. In fact, to make
things a bit more interesting it
actually inserts the string
Copyright: © into the edit.

The Print Screen button is
straightforward, and has a mere
two lines in its OnClick event

➤ Listing 1

const
KeyEventF_KeyDown = 0;

...
KeyBd_Event(vk_Menu, MapVirtualKey(vk_Menu, 0), KeyEventF_KeyDown, 0);
KeyBd_Event(vk_Insert, MapVirtualKey(vk_Insert, 0), KeyEventF_KeyDown, 0);
KeyBd_Event(vk_Insert, MapVirtualKey(vk_Insert, 0), KeyEventF_KeyUp, 0);
KeyBd_Event(vk_End, MapVirtualKey(vk_End, 0), KeyEventF_KeyDown, 0);
KeyBd_Event(vk_End, MapVirtualKey(vk_End, 0), KeyEventF_KeyUp, 0);
KeyBd_Event(vk_Right, MapVirtualKey(vk_Right, 0), KeyEventF_KeyDown, 0);
KeyBd_Event(vk_Right, MapVirtualKey(vk_Right, 0), KeyEventF_KeyUp, 0);
KeyBd_Event(vk_Prior, MapVirtualKey(vk_Prior, 0), KeyEventF_KeyDown, 0);
KeyBd_Event(vk_Prior, MapVirtualKey(vk_Prior, 0), KeyEventF_KeyUp, 0);
KeyBd_Event(vk_Menu, MapVirtualKey(vk_Menu, 0), KeyEventF_KeyUp, 0);

46 The Delphi Magazine Issue 40

handler. You can see that the
keypress is simulated using a rou-
tine called SendKeys, declared in
KeysU.Pas as:

procedure SendKeys(
const Keys: String);

So SendKeys expects a string, which
should be made up of character
representations of the virtual key
codes of all the keys that need to be
individually pressed and released.
This is why vk_SnapShot is passed
to the Chr function, to make a value
of type Char, before passing it to
the SendKeys routine. Also, remem-
ber that even though you may want
to simulate Alt+Print Screen, you
should forget about the Alt key,
since Print Screen is a special case
with regard to faked keystrokes. In
fact the checkbox on the form
helps deal with this. As you check
and uncheck it, it changes the
value of a Boolean typed constant in
the KeysU unit called SnapShot
WholeScreen, which is used if the
vk_SnapShot virtual key is passed
through to SendKeys:

SendKeys(Chr(vk_SnapShot));
ImgClipBoard.Picture.Assign(
ClipBoard);

SendKeys is
fairly useful if
you wish to
create indi-
vidual key-
strokes by
different keys,
but some-
times (in fact
often) this is
not enough. In
many cases
you need to
be able to
hold one key
down whilst
pressing one
or more other
keys, and then
later release the original key. For
these cases, there are two other
routines in the KeysU unit: PressKey
and ReleaseKey, both of which take
one character as a parameter.

Let’s take a look at the Delphi
button on the form. The job of this
button is to invoke the Delphi
About box and type in the Easter
Egg character sequence indicated
by the spin edit. For example,
Alt+TEAM gives you a scrolling list of
the entire Delphi development

team. The idea is that Alt must be
kept pressed whilst you type the
letters T, E, A and M.

The way the code operates is to
see if the About box is already
showing. If it is, it closes it with a
press of the Escape key to make
sure that the rest of the code starts
off in a consistent state, with no
About box showing. Next, the
Delphi main window (which is a
form called AppBuilder, of type
TAppBuilder) is brought to the fore-
ground. This may not be enough to
make it visible, however: if Delphi
is minimised, the main form is in
fact hidden. Regardless, though,
the keystrokes necessary to
invoke the About box are then
manufactured (Alt, H, A). Once the
About box appears, the Easter Egg
key sequence is sent by pretending
to hold the Alt key down (with
PressKey), sending the appropriate
keystrokes along (with SendKeys),
and finally releasing the Alt key
(with ReleaseKey).

Listing 2 shows the code. The
details of the ScreenHas256Colours-
OrMore function are not important,
but can be found in the project on
the disk. It merely calls some Win-
dows API routines to work out if
the Alt+AND Easter Egg from Delphi
1 stands any chance of working.

You might notice that I was care-
ful to pass the character keypress
values as upper cased letters. This
is a requirement: the virtual key

procedure TForm1.btnDelphiClick(Sender: TObject);
var
Wnd: HWnd;

begin
Wnd := FindWindow('TAboutBox', 'About Delphi');
{ Get rid of About box if it happens to be up so we know where we are }
if Wnd <> 0 then begin
BringWindowToTop(Wnd);
SendKeys(Chr(vk_Escape));

end;
{ Find Delphi's main window - note the Delphi }
{ caption changes, so we'll use nil for the caption }
Wnd := FindWindow('TAppBuilder', nil);
if Wnd = 0 then
Exit;

{ If Delphi is minimised, this statement may have no visible effect }
BringWindowToTop(Wnd);
{ Delphi 1 has four About box gang screens, Delphi 2 has three, }
{ Delphi 3 has three and Delphi 4 has four. The fourth one }
{ (Delphi 1 only) only works on >=256 colour screen drivers }
SendKeys(Chr(vk_Menu)+'HA'); { Invoke the About box: Help | About }
PressKey(Char(vk_Menu)); { Hold down Alt key }
case edtGangScreen.Value of
1 : SendKeys('DEVELOPERS');
2 : SendKeys('TEAM');
3 : SendKeys('VERSION');
4 : if ScreenHas256ColoursOrMore then

SendKeys('AND')
else
MessageDlg(
'Alt+AND (Delphi 1 only) requires at least a 256-colour driver',
mtInformation, [mbOk], 0);

5: SendKeys('QUALITY');
6: SendKeys('CHUCK');

end;
ReleaseKey(Char(vk_Menu)); { Release Alt key }

end;

➤ Listing 2

➤ Figure 2

December 1998 The Delphi Magazine 47

codes of character keys are repre-
sented by the ordinal value of their
upper case character (again refer
to Issue 38, p59). In fact the only
keys that have real virtual key
codes defined are the non-
printable characters (with the
exception of just a couple of keys
such as Tab, Enter and Space).

Things are made rather more
difficult by additional printable
characters which are not alphanu-
meric, and any requirement to
enter mixed case characters. The
third button on the form in Figure 2
is designed to enter a string into an
edit control with one upper case
letter, several lower case letters
and also a colon and space. In
order to find out what is required
here, we can help ourselves quite a
lot by making use of WinSight once
again. Figure 3 shows what key up
and down messages are generated
by manually typing most of my
desired string into the edit box.

What this tells us, rather explic-
itly, is that the keypresses and
releases I need to get everything up
to (but not including) the copy-
right symbol (assuming Caps Lock
is off) are those shown in Listing 3.

As far as virtual key codes go,
Shift and Space have been accu-
rately listed as vk_Shift and
vk_Space. All the letters have vir-
tual key codes listed by WinSight,
but in Delphi we use the ordinal
value of the uppercase version of
the letter. The one remaining
sticky point is the colon (or semi-
colon) key. This is listed as some

➤ Figure 3

C: Press Shift, press C, release C, release Shift
o: Press O, release O
p: Press P, release P
y: Press Y, release Y
r: Press R, release R
i: Press I, release I
g: Press G, release G
h: Press H, release H
t: Press T, release T
Colon: Press Shift, press semicolon, release semicolon, release Shift
Space: Press Space, release Space

➤ Listing 3

procedure TForm1.btnCopyrightClick(Sender: TObject);
begin
{ The intention here is to enter the string: }
{ Copyright: © }
{ into the edit control. This requires some planning }
{ to get the mixed case, as well as the colon character }
{ Give focus to edit }
Edit1.SetFocus;
{ Make sure Caps Lock is off }
if Odd(GetKeyState(vk_Capital)) then
SendKeys(Chr(vk_Capital));

{ Hold down Shift key, press C, then release Shift }
PressKey(Chr(vk_Shift));
SendKeys('C');
ReleaseKey(Chr(vk_Shift));
{ Press more keys (which will be lower case) }
SendKeys('OPYRIGHT');
{ Hold down Shift key, press ;, then release Shift }
PressKey(Chr(vk_Shift));
SendKeys(#$BA);
ReleaseKey(Chr(vk_Shift));
{ Send a space character }
SendKeys(Chr(vk_Space));
{ Do Alt+0169 on number pad }
PressKey(Chr(vk_Menu));
SendKeys(Chr(vk_Insert) + Chr(vk_End) + Chr(vk_Right) + Chr(vk_Prior));
ReleaseKey(Chr(vk_Menu))

end;

➤ Listing 4

strange constant, vk_FFBA (a
symbol which does not exist).

To find out which value we
should be using, look at the low
byte of the WParam value for the
message in question. WinSight
uses the short name wp for WParam
and gives it a value of $000000BA.
The low byte of this value is $BA. So
$BA is the virtual key code for the

semicolon key. Unfortunately there
are no predefined symbols for
many of these non-alphanumeric
printable keys, despite my
suggesting there are in Issue 38.

So after all this investigation we
should now understand Listing 4,
which is the OnClick event handler
for the form’s Copyright button.
Note that the code also checks
whether Caps Lock is on or off. If it is
on (indicated by the lowest bit in
the GetKeyState return value being
set, thereby making it an odd
number), it is turned back off.

The routines that do all the work
in the KeysU unit are all based
around calls to KeyBd_Event. In fact
a procedure PostVirtualKeyEvent
is the only thing to call KeyBd_Event
directly. This helper routine is in
turn called by PressKey, ReleaseKey
and SendKeys. PostVirtualKeyEvent
uses conditional compilation to
cater for the differences between
the 16-bit and 32-bit versions of
KeyBd_Event (see Listing 5). You
can see where the name of this
helper routine came from, it is the

48 The Delphi Magazine Issue 40

const
SnapShotWholeScreen: Boolean = False;
KeyEventF_KeyDown = 0;

{$ifndef WIN32}
KeyEventF_KeyUp = $80; {It changes to 2 in Win32}

procedure KeyBd_Event; far; external 'USER' index 289;
procedure PostVirtualKeyEvent(vk: Word; fUp: Boolean);
var
AXReg, BXReg: WordRec;

const
ButtonUp: array[Boolean] of Byte =
(KeyEventF_KeyDown, KeyEventF_KeyUp);

begin
AXReg.Hi := ButtonUp[fUp];
AXReg.Lo := vk;
BXReg.Hi := 0; { not an extended scan code }
{ Special processing for the Print Screen key. }
{ If scan code is set to 1 it copies entire }
{ screen. If set to 0 it copies active window. }
if vk = vk_SnapShot then
BXReg.Lo := Byte(SnapShotWholeScreen)

else
BXReg.Lo := MapVirtualKey(vk, 0);

asm
mov ax, AXReg
mov bx, BXReg
call KeyBd_Event

end;
end;
{$else}
procedure PostVirtualKeyEvent(vk: Word; fUp: Boolean);
var
ScanCode: Byte;

const
ButtonUp: array[Boolean] of Byte =

(KeyEventF_KeyDown, KeyEventF_KeyUp);
begin
if vk = vk_SnapShot then
{ Special processing for the Print Screen key. }
{ If scan code is set to 1 it copies entire }
{ screen. If set to 0 it copies active window. }
ScanCode := Byte(SnapShotWholeScreen)

else
ScanCode := MapVirtualKey(vk, 0);

KeyBd_Event(vk, ScanCode, ButtonUp[fUp], 0);
end;
{$endif}
procedure PressKey(Key: Char);
begin
PostVirtualKeyEvent(Ord(Key), False)

end;
procedure ReleaseKey(Key: Char);
begin
PostVirtualKeyEvent(Ord(Key), True)

end;
procedure SendKeys(const Keys: String);
var
Loop: Byte;

begin
for Loop := 1 to Length(Keys) do Begin
{ Press key }
PostVirtualKeyEvent(Ord(Keys[Loop]), False);
{ Release key }
PostVirtualKeyEvent(Ord(Keys[Loop]), True);

end;
{ Let the keys be processed }
Application.ProcessMessages;

end;

➤ Listing 5
procedure PostVirtualKeyEvent(vk: Word; fUp: Boolean);
var
ScanCode: Byte;
Input: TInput;

const
KeyEventF_KeyDown = 0;
//This constant is defined incorrectly in Delphi 4
Input_KeyBoard = 1;
ButtonUp: array[Boolean] of Byte = (KeyEventF_KeyDown, KeyEventF_KeyUp);

begin
if vk = vk_SnapShot then
{ Special processing for the PrintScreen key. }
{ If scan code is set to 1 it copies entire }
{ screen. If set to 0 it copies active window. }
ScanCode := Byte(SnapShotWholeScreen)

else
ScanCode := MapVirtualKey(vk, 0);

FillChar(Input, SizeOf(Input), 0);
Input.IType := Input_KeyBoard;
Input.KI.wVk := vk;
Input.KI.wScan := ScanCode;
Input.KI.dwFlags := ButtonUp[fUp];
Input.KI.time := GetTickCount;
SendInput(1, Input, SizeOf(Input))

end;

same as the old 16-bit Pen Win-
dows keystroke manufacturing API
name referred to earlier.

A second version of the project,
KeyTest2.Dpr is also supplied.
This works exactly the same as the
first version of the project with one
difference. Instead of manufactur-
ing keystrokes using KeyBd_Event, it
uses the new SendInput API. The
implications of this are that the
program will only run on Windows
98 or later, or on Windows NT 4.0
with Service Pack 3 or later. Also, it
will only compile in Delphi 4 or
later. In all other respects it
matches the first project. The
implementation of PostVirtual-
KeyEvent now looks like Listing 6.

A couple of noteworthy points
arise about the Delphi 4 support
for SendInput. In Delphi 4, there are
two mistakes in the Delphi transla-
tions of the types and constants
used by SendInput. Firstly, as you
can see from Listing 6, the constant
Input_KeyBoard (and also
Input_Hardware) are defined
incorrectly as zero. Instead,
Input_KeyBoard should be 1 and
Input_Hardware should be 2. Also,
the TInput record has three variant
parts: a TMouseInput record, a
TKeyBdInput record and a
THardwareInput record. Each of
these records has a field for

passing extra information (as in
the fourth parameter to
KeyBd_Event). However, these
are all incorrectly named
dwExtractInfo instead of
dwExtraInfo. The constants are
fixed in the second update to
Delphi 4, but not the record field
names.

Brian Long is an independent
consultant and trainer. You can
reach him at brian@blong.com

Copyright @ 1998 Brian Long
All rights reserved.

➤ Listing 6
Back Issues

On Paper And CD-ROM
As Brian has helpfully pointed out,
there is a wealth of relevant mate-
rial in the back issues of The Delphi
Magazine.

Issues 1 to 36 (up to August 1998)
are all included on our Collection
‘98 CD-ROM, complete with a
browser and search engine, all the
source code and loads of bonus
software too. The price is £30 inclu-
sive to anywhere worldwide.

We also have nearly all the past
issues available on good old paper,
at £7 each in the UK and £8 each
elsewhere.

We take VISA, MasterCard and
Amex. Orders to:

iTec, 9a London Road,
Bromley, Kent BR1 1BY,

United Kingdom
Fax: +44 (0)181 249 0376

